Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19

Running Title: Angiotensin Receptor and COVID-19

James H. Diaz, M.D., MPH&TM, Dr. P.H.

Professor and Head, Environmental and Occupational Health Sciences, School of Public Health; Professor of Anesthesiology, School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, Louisiana, USA

Corresponding author:

James H. Diaz, M.D., Dr.PH

Professor and Head, Environmental and Occupational Health Sciences, School of Public Health;

Professor of Anesthesiology, School of Medicine, Louisiana State University Health Sciences

Center (LSUHSC) in New Orleans,

Office: 2020 Gravier Street, Third Floor New Orleans, Louisiana 70112 USA

Tel: 504-569-5700 Fax: 504-568-5701

E-mail: jdiaz@lsuhsc.edu.

Support for JHD was provided by departmental and institutional sources.

No conflicts of interest declared.

Manuscript Word Count: 599.

2

Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19

Highlight

Intravenous infusions of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in experimental animals increase the numbers of angiotensin-converting enzyme 2 (ACE2) receptors in the cardiopulmonary circulation. ACE2 receptors serve as binding sites for SARS-CoV-2 virions in the lungs. Patients who take ACEIs and ARBS may be at increased risk of severe disease outcomes due to SARS-CoV-2 infections.

Highlight Word Count: 59.

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are highly recommended medications for patients with cardiovascular diseases, such as refractory hypertension, coronary artery disease, heart failure, and post-myocardial infarction status.^{1, 2} ACEIs and ARBs are also recommended for the management of cardiovascular diseases in elderly patients, and in patients with diabetes and renal insufficiency.³

Intravenous infusions of ACEIs and ARBs in experimental animals increase the numbers of angiotensin converting enzyme 2 (ACE2) receptors in the cardiopulmonary circulation.⁴ Patients taking ACEIs or ARBs chronically for cardiovascular diseases are assumed to have increased numbers of ACE2 receptors throughout their cardiopulmonary circulations as observed in experimental animal models.

ACE2 receptors serve as binding sites for the anchoring spike (S) proteins on the exterior surfaces of beta coronaviruses.⁵ The beta coronavirus SARS-CoV causes the severe acute respiratory syndrome (SARS). The phylogenetically related beta coronavirus, SARS-Cov-2, causes the novel coronavirus disease (nCoV-2019) or COVID-19.⁵ S proteins anchor both beta coronaviruses to ACE2 receptors in the lower respiratory tract of infected patients in order to gain entry into the lungs. Viral pneumonia and potentially fatal respiratory failure may result in susceptible persons after 10-14 days.⁵

Since patients treated with ACEIs and ARBS will have increased numbers of ACE2 receptors in their lungs for coronavirus S proteins to bind to, they may be at increased risk of severe disease outcomes due to SARS-CoV-2 infections. Patients treated with ACEIs and ARBs for cardiovascular diseases should avoid crowds, mass events, ocean cruises, prolonged air

travel, and all persons with respiratory illnesses during the current COVID-19 outbreak in order to reduce their risks of infection.

This warning is supported by a recent descriptive analysis of 1,099 patients with laboratory-confirmed COVID-19 infections treated in China during the reporting period, December 11, 2019, to January 29, 2020.⁶ In this study, Guan et al reported more severe disease outcomes in patients with hypertension, coronary artery disease, diabetes, and chronic renal disease (**Table 1**).⁶ Severe outcomes included intensive care unit (ICU) admission, mechanical ventilation, and death.⁶ All patients with the diagnoses noted met the recommended indications for treatment with ACEIs or ARBs. The results of this study demonstrated that patients with COVID-19 infections, and most likely treated with ACEIs or ARBs, suffered more severe disease encommended to further confirm chronic therapy with ACEIs or ARBs as a risk factor for more severe disease outcomes.

Elderly patients, who often have comorbidities including cardiovascular diseases, hypertension, diabetes, and chronic_kidney disease, are more likely to be taking ACEIs or ARBs; and are at greater risks of contracting symptomatic and even fatal COVID-19 infections than children. Two mechanisms may protect children from COVID-19 infections: (1) cross-protective antibodies from multiple upper respiratory tract infections caused by the common cold-causing alpha coronaviruses, and (2) fewer ACE2 receptors in their lower respiratory tracts to attract the binding S proteins of the beta coronaviruses. These immunological and molecular observations support the clinical observations of infrequent COVID-19 infections in children compared to more frequent COVID-19 infections in elderly patients, especially those with comorbid conditions. In addition to elderly status with comorbidities, treatment of hypertension and other cardiovascular disorders with ACEIs or ARBs appears to be a risk factor for more severe disease outcomes including ICU admission, mechanical ventilation, and death, in patients with COVID-19 infections. This conclusion is supported by the results a recent Chinese study of over 1,000 patients with COVID-19 infections that reported more severe disease outcomes in patients with hypertension, coronary artery disease, diabetes, and chronic renal disease meeting all criteria for treatment with ACEIs or ARBs.⁶

References

- Verdecchia P, Angeli F, Mazzotta G, et al. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers in the treatment of hypertension: should they be used together. Curr Vasc Pharmacol 2010; 8(6):742-746.
- Messerli FH, Bangalore S, Bavishi C, Rimoldi SF. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? J Am Coll Cardiol 2018; 71(13):1474-1482.
- Winkelmayer WC, Fischer MA, Schneeweiss S, et al. Underuse of ACE inhibitors and Angiotensin II receptor blockers in elderly patients with diabetes. Am J Kidney Dis 2005; 46(6):1080-1087.
- Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme
 Circulation 2005; 111(20):2605-2610.
- Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Life Sciences 2020; 63(3):457-460.
- Guan W, Ni Z, Liang W, et al. Clinical characteristics of coronavirus disease in China. N Engl J Med February 28, 2020; DOI:10.1056/MEJMoa2002032.

Table 1.The Clinical Characteristics of Study Patients with COVID-19 Infections and
Coexisting Disorders Stratified According to Disease Severity and Primary
End-Point (N = 1,099).⁶

F	1	1	1	1	
Coexisting	All	Non-	Severe	Primary	Primary
disorder	nationta		disease	and naint	and noint
alsoraer	patients	severe	uisease	end-point	end-point
	N = 1,099	disease	N = 173	reached*	not
	No. (%)	N = 926	No. (%)	N = 67	reached*
		No. (%)		No. (%)	N = 1,032
					No. (%)
Hypertension	165	124	41	25	141
	(15.0)	(13.4)	(23.7)	(35.8)	(13.7)
Coronary	27	17	10	6	21
artery disease	(2.5)	(1.8)	(5.8)	(9.0)	(2.0)
Diabetes	81	53	28	18	63
	(7.4)	(5.7)	(16.2)	(26.9)	(6.1)
Chronic	8	5	3	2	6
kidney disease	(0.7)	(0.5)	(1.7)	(3.0)	(0.6)

*Primary end-points	s included intensive	care unit admission,	mechanical
---------------------	----------------------	----------------------	------------

ventilation, or death.